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Abstract. Elastoplastic contact problems with hardening are ubiquitous in industrial metal
forming processes as well as many other areas. From a mathematical perspective, they are char-
acterized by the difficulties of variational inequalities for both the plastic behavior as well as the
contact problem. Computationally, they also often lead to very large problems. In this paper, we
present and evaluate a set of methods that allows us to efficiently solve such problems. In particular,
we use adaptive finite element meshes with linear and quadratic elements, a Newton linearization
of the plasticity, active set methods for the contact problem, and multigrid-preconditioned linear
solvers. Through a sequence of numerical experiments, we show the performance of these methods.
This includes highly accurate solutions of a benchmark problem and scaling our methods to 1,024
cores and more than a billion unknowns.
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1. Introduction. Elastoplasticity is a phenomenon that refers to the fact that
materials can deform elastically in reaction to forces, but deformation becomes plas-
tic if the internal stresses exceed a certain threshold. Plastic deformation does not
revert to the original frame of reference once the external forces are removed, un-
like elastic deformation. Consequently, plastic deformation is purposefully used in
many industrial forming processes [9, 34, 44, 47], and their control is important to
achieve material shapes close to the desired ones. On the other hand, elastoplasticity
is also important when it happens inadvertently, for example in the investigation of
the long term deformation of machine components under external loads [30,32,33], in
the case of geophysical deformation processes such as plate deformation on long time
scales [31,36,37], or the response of soil to nearby buildings, dams or earthquakes [29].

Given this importance in both the control of industrial processes as well as in
understanding natural phenomena that are difficult to investigate experimentally, it
is not surprising that a large body of work has been devoted to the development of
methods for the computational simulation of elastoplastic processes. Like many other
practically important cases, this has proven to be a difficult area characterized by at
least the following obstacles:

• The realistic simulation of almost all purposeful industrial forming processes
as well as the investigation of geophysical problems requires full 3d simula-
tions. This immediately yields problems that have millions of unknowns, or
even many more than that. Consequently, efficient computational methods
are indispensable for any realistic use of computational tools.
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• Plasticity is mathematically described as a variational inequality in which
the properties of the material depend in a non-smooth manner on the stress
and other possible internal variables like the plastic strain at any given point.
This results in a solution that is typically not smooth and highly accurate
simulations can only be achieved by adequately resolving the boundaries of
the plastic region, for example using fine meshes or adaptive mesh refinement.
The non-smoothness of the material behavior also requires sophisticated non-
linear solvers.

• Most practical forming methods – rolling, drilling, machining, cutting – are
in fact contact problems in which the desired deformation is affected by a
tool that exerts external forces to the surface to the body under deformation.
Where these two bodies are in contact is a priori unknown and is only a result
of the deformation of one or both bodies. The mathematical description of
contact problems is again a variational inequality with the resulting need for
adequate mesh resolution and nonlinear solvers.

In this article, we propose an integrated set of computational methods based
on the finite element method that address these difficulties and apply them to metal
forming examples of elastoplastic contact problems. The motivation of our study is the
development of methods that are capable of solving problems of realistic complexity.
In particular, this means that we need to be able to resolve the solution adequately,
and that we are able to solve problems that may require many millions or up to
billions of unknowns. The building blocks of our approach will be:

• Mesh adaptation: Resolving the boundaries of the contact area as well as
of the plastic zone is indispensable for accurate computations. However,
given that these are lower-dimensional objects, it can not efficiently be done
using global mesh refinement. Optimal algorithms therefore must be able to
use local mesh adaptation, and the remainder of the numerical methods –
for example, the partitioning strategy for parallel computations – must be
able to cope with locally adaptive and dynamically changing meshes. The
locations to be resolved with a finer mesh are not known a-priori but must
be determined automatically.

• Efficient linear and nonlinear solvers: Solving large problems requires linear
and nonlinear solvers that do not degrade as the problem size grows. We
will base our implementation on a damped Newton method for the plastic
material behavior and show experimentally that the number of iterations
remains constant with increasing problem sizes if the plastic regions are suffi-
ciently resolved (see Section 4). Our treatment of the contact conditions uses
a primal-dual active set method that we can reformulate as a semi-smooth
Newton method; this gives rise to a problem that can be transformed into a
linear system that is amenable to multigrid solvers and, thus, to a more or
less constant number of inner linear iterations.

• Massive parallelization: In order to solve the largest problems, we need to
rely on clusters with hundreds or more processor cores. This places tight
limits on the algorithms we can use. For example, preconditioners that only
work on the part of the matrix that is available on every processor will not
be able to scale adequately.

The point of this paper is not to introduce any of these methods in isolation, but to
show that they all interact well and form a combination that is capable of solving
complex, realistic problems. These building blocks will be discussed in detail in the
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following sections. We will demonstrate their performance experimentally in Section 4
where we also compare them with other established and currently used methods.

The implementation of these algorithms is available under an open source license
as the step-42 tutorial program1 of the deal.II finite element library [3, 4]. It uses
the Trilinos library [18, 19] for its parallel linear algebra and p4est [8] for parallel
mesh handling.

Literature overview. We are here considering a unilateral contact problem with a
rigid obstacle impinging on a deformable, three dimensional body. The material of the
body is modeled by an elasto-plastic constitutive law with linear isotropic hardening.
The mathematical description of such problems results in two nonlinearities: the
obstacle condition and material behavior.

There is a great deal of literature on such problems. The best and most efficient
ways to deal with the plastic behavior are typically variants of Newton’s method, see
for example [1, 12, 15, 16, 39, 41, 43]. To make these methods more robust, one needs
to globalize them, for example using a line search for a damping parameter [9,39,46]
and we will describe such a method in Section 3.5. Another strategy to choose the
damping parameter can be found in [46] and the references therein.

For the contact problem, many methods have been proposed. An overview can
be found in the book [51] and in [7,17,23,25,40,50] which also discuss the primal-dual
active set algorithms we will use below. In contrast, references [5,9] discuss conjugate
gradient-based projected Gauss-Seidel methods (CGPSSOR) which are very efficient
for problem sizes up to a few 100,000 degrees of freedom. However, we will here
consider problems that are much bigger and we will demonstrate the lack of efficiency
of CGPSSOR for such problems in Section 4.4.

The combination of the two preferred algorithms – Newton’s method for the
nonlinear material law and the primal-dual active set strategy based on a semi-smooth
Newton interpretation for the contact problem – has previously been shown to be very
efficient [7, 16]. We will therefore follow this approach here as well.

As mentioned, our goal is to solve very large problems on adaptively refined
meshes. We base our implementation on the deal.II, Trilinos, and p4est libraries
for which scalability to large problem sizes has previously been demonstrated for
entirely different applications (see, for example, [2,27,48]). We will demonstrate that
excellent scalability is also possible in the current context.

Overview. The structure of this paper is as follows: In Section 2, we present the
mathematical model we will consider in this paper. The interplay of the numerical
methods to compute efficient and accurate numerical solutions is described in Sec-
tion 3. The efficiency of our approach is demonstrated using numerical examples in
Section 4, where we also define a benchmark problem. Finally, we will conclude in
Section 5.

2. Mathematical description of the model problem. In this section, let us
give an overview of the mathematical formulation of the problem. In the following,
we will first discuss the strong form of the equations and inequalities we intend to
solve. As is common in formulating plastic deformations, this formulation will involve
both displacements and stresses (i.e., it is a mixed formulation) where the inequality

1At the time of writing, the documentation of this program is not yet complete. However, we
commit to finishing it before publication should this paper be accepted. The current state of the
program can be found at http://www.dealii.org/developer/doxygen/deal.II/step_42.html.

We will make the programs (all variants of step-42) used in the computations shown in Section
4 available as supplementary material to this article.
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Fig. 2.1. Left: Starting configuration. Right: Deformed body. We consider only static defor-
mations and therefore solve for the static deformation corresponding to the right picture.

describing the contact is on the displacements and the inequality describing plasticity
is on the stress. We will then show a variational formulation corresponding to this
problem. All algorithms discussed in the next sections are based on this variational
(weak) formulation, and it turns out that they can be most efficiently formulated if
they only involve the displacement variable as this leads to a positive definite operator.
Consequently, we will eliminate the stress and use a nonlinear radial-return mapping to
replace the plasticity inequalities. Similarly, we will show that the contact inequalities
can be replaced by a semi-smooth nonlinearity, resulting in a formulation that only
contains (nonlinear) variational equations and that is amenable to a Newton iteration.

A sketch of the situation we have in mind is shown in Fig. 2.1. Let there be
an obstacle that we imagine is pressed into a deformable, bounded polygonal body
Ω, where contact may happen on a subset ΓC of its boundary. We can describe
the relative positions of obstacle and body by defining, for every point x ∈ ΓC of
the undeformed object, the closest point of the obstacle as ΦO(x) and by ΦΩ(x) =
x+u(x) the position of the deformed object where u is the deformation field. For small
displacements, the contact (non-penetration) condition then requires that ΦO(x)·n ≥
ΦΩ(x)·n where n = n(x) is the outward normal to ΓC at x. We rewrite this condition
as g(x)−u(x)·n ≥ 0 where g = (ΦO(x)−ΦΩ(x))·n is the commonly used gap function
indicating the distance between obstacle and undeformed object. Note that on the
other hand, g−u ·n is the distance between obstacle and deformed object. The latter
is consequently the quantity that is constrained. For more information, see [25].

2.1. Classical formulation. Elastoplastic contact problems are typically for-
mulated as partial differential equations with multiple inequalities due to the plastic
behavior of the medium and the contact condition. In particular, plasticity is com-
monly described in the following way: While the medium is linear elastic for small
displacements, it is only capable of carrying internal stresses σ(x) limited by some
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maximal stress, i.e., that satisfies an inequality F(σ) ≤ 0 at every point x. The sim-
plest example of such a function F is the von Mises flow function F(σ) = |σD| − σy
where σy is the yield stress, σD = σ − 1

3
trace(σ)I is the deviatoric part of the stress

tensor, and | · | denotes the Frobenius norm of a tensor. If the stress increases to σy,
the material ceases to be elastic and plastic yielding occurs.

Given this setup, the classical formulation of the problem we will consider here
reads as follows (see, for example, [9]): Find a displacement u = u(x), a stress
σ = σ(x) and a tensor-valued Lagrange multiplier εp = εp(x) in a domain Ω ⊂ R3 so
that

ε(u) = Aσ + εp in Ω, (2.1)

−div σ = f in Ω, (2.2)

εp : (τ − σ) ≥ 0 ∀τ with F(τ) ≤ 0 in Ω, (2.3)

u = 0 on ΓD, (2.4)

σ · n− [n · (σ · n)]n = 0, n · (σ · n) ≤ 0 on ΓC , (2.5)

(n · (σ · n))(n · u− g) = 0, n · u− g ≤ 0 on ΓC . (2.6)

Here, (2.1) defines the relationship between strain ε(u) = 1
2

(
∇u +∇uT

)
and stress

σ via the fourth-order compliance tensor A; εp provides the plastic component of the
strain to ensure that the stress does not exceed the yield stress. In the remainder of
this paper, we will only consider isotropic materials for which A can be expressed in
terms of the Lamé moduli λ and µ or alternatively in terms of the bulk modulus κ
and µ. Equation (2.2) is the force balance; we will here not consider any body forces
and henceforth assume that f = 0. The complementarity condition (2.3) implies that
εp = 0 if F(σ) < 0 but that εp may be a nonzero tensor if and only if F(σ) = 0,
and in particular that in this case εp must point in the direction ∂F(σ)/∂σ. In
physical terms, this inequality corresponds to the maximum plastic work principle
for time dependent deformation problems. Equation (2.4) describes a fixed, zero
displacement on ΓD and (2.5) prescribes that on the surface ΓC = ∂Ω\ΓD where
contact may appear, the normal force σn = n · (σ(u) · n) exerted by the obstacle is
inward (no “pull” by the obstacle on our body) and with zero tangential component
σt = σ · n − σnn = σ · n − [n · (σ · n)]n. The last condition, (2.6), is again a
complementarity condition that implies that on ΓC , the normal force can only be
nonzero if the body is in contact with the obstacle; the second part describes the
impenetrability of the obstacle and the body. The last two equations are commonly
referred to as the Signorini contact conditions.

Materials change their atomic structure as they deform plastically. As a conse-
quence, their material properties also change as a result of plasticity. For metals,
which we here consider as the case of interest, plastic deformation typically results in
a stiffening. This “hardening” effect is described by letting the yield stress depend on
the norm of the plastic strain, |εp|.2 We will describe this in the simple von Mises flow
function by using a linear isotropic hardening law where σy = σ0 + γiso|εp| and con-
sequently F iso(σ, |εp|) = |σD|− (σ0 +γiso|εp|) with the isotropic hardening parameter
γiso > 0.

2For some materials, such as brittle or ductile rocks as well as soil, material models typically also
increase the yield stress with the pressure. However, for the case of metals we are interested in here,
experimental data suggests that hydrostatic pressure causes no plastic flow [6] and should thus not
be included in the definition of the yield stress.
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2.2. Formulation as a variational inequality. Our algorithms for the solu-
tion of the problem outlined in the previous section will be based on a variational
formulation. There are numerous variational formulations (e.g., primal-mixed, dual-
mixed and primal). In the following, we will only state the primal-mixed formulation
that corresponds to the problem outlined above and then, in the next section, refor-
mulate it as a nonlinear primal one.

To this end, let us introduce the following spaces (our computations will all be in
dimension d = 3):

V =
{

u ∈
[
H1(Ω)

]d
: u = 0 on ΓD

}
,

V + = {u ∈ V : n · u ≤ g on ΓC} ,
W = L2(Ω,Rd×dsym),

Π(W × L2(Ω,R)) =
{

(τ, η) ∈W × L2(Ω,R) : F iso(τ, η) ≤ 0
}
.

With these spaces, our problem is defined by the following primal-mixed variational
formulation (see [24]): Find {(σ, ξ),u} ∈ Π(W × L2(Ω,R))× V + so that

(Aσ − ε(u), τ − σ) + γiso (ξ, η − ξ) ≥ 0, ∀(τ, η) ∈ Π(W × L2(Ω,R)) (2.7)

(σ, ε(ϕ)− ε(u)) ≥ 0, ∀ϕ ∈ V +. (2.8)

While not immediately obvious, this formulation introduces a function ξ ∈ L2(Ω,R)
that is zero wherever F iso(σ, ξ) < 0, i.e., in the elastic part of the domain. In the
plastic regions of the domain where F iso(σ, ξ) = 0, following the normality principle
as presented in physics and applying our yield function F iso(σ, ξ), we obtain that
ξ = |εp| = |Aσ − ε(u)|. See [24] for more details.

2.3. Reformulating plasticity as a nonlinear equality. The mixed formu-
lation (2.7)–(2.8) above, when used as the basis of the finite element method, yields a
saddle point problem with all the usual consequences for solving the associated linear
systems. For computational purposes, we prefer to transform the formulation into one
that only includes the displacement variable u and from which the stress σ has been
eliminated. Such a primal problem can be obtained by making use of the projector
onto the set of admissible stresses (see [9, 14, 45]). For the case of isotropic materials
with isotropic linear hardening, it is defined as

PΠ(τ) :=

τ, if |τD| ≤ σ0,[
γiso

2µ+ γiso
+

(
1− γiso

2µ+ γiso

)
σ0

|τD|

]
τD +

1

3
trace(τ)I, if |τD| > σ0,

(2.9)

where µ is the shear modulus of the material. We have also absorbed the hardening
behavior into the nonlinearity, using the fact that we have assumed a linear growth
of the yield stress with the plastic strain.

Introducing the stress-strain tensor C = A−1, we can use this projector to define
the desired, primal formulation: Find the displacement u ∈ V + so that

(PΠ(Cε(u)), ε(ϕ)− ε(u)) ≥ 0, ∀ϕ ∈ V +. (2.10)

Note that this formulation has moved the plasticity inequality into a (non-smooth)
nonlinearity and now only contains the contact problem as an inequality. This for-
mulation can be shown to have a unique solution, see [38].
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We could in principle reformulate the problem again to also include the contact
inequality as a (semi-smooth) nonlinearity [21]. We will in fact use this approach below
when solving linearized problems in each Newton step using a primal-dual active set
strategy. However, it is not necessary to introduce this formalism here already, and
we will defer the discussion until we have introduced the discrete problem.

3. Numerical methods. Our basic approach to solving (2.10) consists of two
nested loops that, in pseudo-code can be represented as follow and that solve the
problem on a sequence of finite element meshes:

for ( o=0; o<n o u t e r i t e r a t i o n s ; ++o )
i f ( o>0)

adapt mesh and t r a n s f e r s o l u t i o n to new mesh ;
while ( not converged )

determine a c t i v e s e t ;
assemble l i n e a r i z e d system for Newton step ;
remove cons t ra ined degree s o f freedom from l i n e a r system ;
s o l v e l i n e a r system for Newton update ;
determine step l ength ;
update s o l u t i o n ;

Here, the inner loop is the semi-smooth Newton iteration to compute the solution on
a fixed mesh, while the outer loop is a typical mesh adaptation loop that determines
a mesh with a higher resolution in each iteration based on the solution of the previous
iteration.

Conceptually, we think of the Newton iteration as happening in function spaces,
with every Newton step discretized individually so that it can be computed. In prac-
tice, of course, we intend these steps to happen on a sequence of finer and finer,
adaptively refined meshes (with a small fraction of cells being coarsened) that are
obtained through hierarchic refinement to make the transfer of solutions possible in
an efficient way. The key point of the overall algorithm is to choose components that
interact well with each other. We will comment on the individual pieces in the sub-
sections below. However, the following overarching comments are in order already at
this point:

• Newton’s method is well known to interact well with (adaptive) mesh re-
finement: If the current Newton iterate is transferred from the previous to
the next mesh upon mesh refinement, then one often finds that only a small
number of iterations is necessary on each mesh to achieve convergence of the
discrete nonlinear system there. This implies that in a scheme such as the
one above, most of the Newton iterations happen on coarser meshes where
they are, comparatively, very cheap. We will demonstrate this, with a certain
wrinkle, in Section 4.1.

• Choosing an active set method for the contact problem also integrates well
with the overall framework. For example, active set iterations can be run
concurrently with the Newton iteration, and unlike some interior point or
penalty methods, they do not increase the condition number of the linear
systems to be solved in each iteration. This is important because an approach
that varies a penalty parameter may have to choose this parameter dependent
on the mesh size, potentially increasing the number of Newton iterations on
the finest mesh or increasing the cost of each iteration as a result of worse
conditioning.

• Finally, we will show below how we can formulate the active set iteration in
a way that allows us to retain linear systems that are structurally equivalent
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to discrete elasticity problems and, thus, amenable to solvers for symmetric
and positive definite systems. Such solvers, based on Conjugate Gradients
preconditioned by Algebraic Multigrid (AMG) methods have previously been
shown to work well even for very large problems (see, for example, [27, 48]).
This is in contrast to most other preconditioners that have been proposed for
this kind of problem, and we will compare our method with the CGPSSOR
method in Section 4.4 below.

In the following, we will discuss the various numerical methods that form the
basis of the algorithm outlined above.

3.1. Newton linearization of the plastic behavior. As discussed above,
the first step in our algorithm is to apply a Newton method to compute a better
approximation to the solution of the primal formulation (2.10). Formally, (2.10) is
not differentiable. However, it satisfies the conditions of slant differentiability [21] and,
consequently, we can hope that a formal linearization works. This ultimately leads to
a method equivalent to the frequently used radial-return mapping algorithms [41].

In Newton’s method, we seek an updated solution ui = ui−1 +αiδui ∈ V +. Since
the step length αi can only be determined once δui is known, we derive the equations
for δui under the assumption that we will choose αi = 1. Then, δui = ũi − ui−1 is
computed by solving for the full Newton step ũi using(

IΠε(ũ
i), ε(ϕ)− ε(ũi)

)
≥ 0, ∀ϕ ∈ V +. (3.1)

where the rank-4 tensor IΠ = IΠ(εD(ui−1)) given by

IΠ =


Cµ + Cκ, if |CεD(ui−1)| ≤ σ0,

γiso

2µ+γisoCµ +

(
1− γiso

2µ+γiso

)
σ0

|CεD(ui−1)|

(
Cµ − 2µ

CεD(ui−1)⊗ CεD(ui−1)

|CεD(ui−1)|2

)
+ Cκ, else.

(3.2)

Note that IΠ is the (formal) linearization of PΠ(C·) around εD(ui−1), with the pro-
jector PΠ defined in (2.9). For the linear isotropic material we consider here, the bulk
and shear components of the projector are given by

Cκ = κI ⊗ I, Cµ = 2µ

(
I− 1

3
I ⊗ I

)
,

where I and I are the identity tensors of rank 2 and 4, respectively.
From this, we see that problem (3.1) that needs to be solved in each nonlinear step

is, in essence, a linear elastic contact problem with spatially variable elasticity coef-
ficients. The very first Newton iteration in fact solves an elastic, constant-coefficient
contact problem if we start from u0 = 0. We will first discretize this (inequality)
problem and then, using an active set method, convert it into an elastic (equality)
problem with non-constant coefficients. Those parts of the boundary at which the
deformable object is in contact with the obstacle and forces are inward are treated
as Dirichlet boundaries, i.e., we enforce that the displacement ũi satisfies the contact
condition with equality.

3.2. Discretization. Conceptually, our algorithm approximates the solution of
the linear problem (3.1) that defines the Newton update by finite element discretiza-
tion on a mesh Ti. We will keep the mesh the same between iterations, Ti = Ti+1
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unless we have found that the solution in step i was already sufficiently converged
within the approximation of this mesh by measuring the size of the (discrete) resid-
ual as well as ensuring that the active set defined in Section 3.3 has not changed in
the previous iteration. This typically happens within 6–30 Newton iterations (see
Section 4.1), after which the mesh is refined using a simple smoothness indicator
(the widely used Kelly error estimator [10]). More sophisticated strategies for mesh
refinement are certainly possible here and would likely yield further savings in com-
putational complexity [26,43,49,50].

The discrete problem corresponding to (3.1) asks for a function ũih ∈ V
+,i
h so that(

IΠε(ũ
i
h), ε(ϕh)− ε(ũih)

)
≥ 0, ∀ϕh ∈ V +,i

h (3.3)

where we define the discrete spaces of piecewise polynomial degree p as

V ih =
{

uh ∈
[
H1(Ω)

]d
: uh|K ◦ F−1

K ∈ Qp for all K ∈ Ti,uh = 0 on ΓD

}
,

V +,i
h =

{
uh ∈ V ih : n · uh ≤ g on ΓC ∩N

}
.

Here, Qp are tensor product polynomials up to degree p on the reference element,3

FK is the mapping from the reference element to the element K, N is the set of nodal
points xp of all shape functions ϕip of the finite element space (e.g., the vertices of

Ti for Q1 finite elements). In other words, we only enforce the contact condition at
nodal points.

In the following, we will represent the function uih using its expansion in terms of
finite element shape functions:

ũih(x) =
∑
p∈S

Ũ ipϕ
i
p(x)

where Si is the set of indices of all degrees of freedom.
Remark 1. Error estimation, hierarchic mesh refinement, and the construction

of finite element spaces on such meshes are all techniques that have been well tested on
problems up to very large machine sizes and have been shown to scale almost perfectly
(see, for example, [2]). Consequently, they qualify for our goal of using only methods
that work well even to large problem sizes.

3.3. Reformulation as an equality constrained problem via the primal-
dual active set method. Problem (3.3) is still an inequality constrained, albeit
finite dimensional, problem that can not be solved in one step. In order to solve it, we
apply a single step of a primal-dual active set method that replaces it by an equality
constrained problem where boundary displacements are prescribed on parts of the
contact surface ΓC . Strictly speaking, the solution of this problem is not that of (3.3)
because we can only guess where the discrete solution uih touches the obstacle. We
could iterate out the nonlinear contact problem with the linearized material model,
but in practice it is sufficient to just go with the first approximation of the contact
problem and then re-linearize the plastic nonlinearity.

The general idea of active set methods is as follows: If we knew that the two
objects are in actual contact at ΓAC ⊂ ΓC (the active contact surface), then we could

3We consider hexahedral meshes, but the algorithm also works on tetrahedral meshes when using
the space of polynomials Pp on the reference tetrahedron.
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find the solution of (3.3) by instead searching for a ũih satisfying

min
ũih∈V ih

1

2
(IΠε(ũ

i
h), ε(ũih))

subject to n · ũih = g on ΓAC ∩N .

For numerical stability, it is best to understand the equality constraint in the sense〈
n · ũih − g,nµ

〉
ΓAC ,h

= 0 for all µ ∈ Vh. Here, 〈f, g〉ΓAC =
∫

ΓAC
f g dx, and 〈f, g〉ΓAC ,h

approximates 〈f, g〉ΓAC using quadrature that includes only quadrature points that are

also nodal points of the finite element space.4 In practice, this means computing
〈f, g〉ΓAC ,h via Gauss-Lobatto quadrature, using the fact that the shape functions for

Qp elements are defined at the Gauss-Lobatto points.
With this, the solution of the problem above is given by the following optimality

conditions:

(IΠε(ũ
i
h), ε(ϕ)) + 〈n · λh,nϕh〉ΓAC ,h = 0 ∀ϕ ∈ V ih , (3.4)〈

n · ũih − g,n · µh
〉

ΓAC ,h
= 0 ∀µh ∈ V ih . (3.5)

This problem only defines the Lagrange multiplier λh in normal direction and only on
ΓAC . We could extend it by zero but it is a quantity whose non-unique parts are never
used, as we will see next – in fact we will eliminate it altogether from the discrete
problem and only compute its unique components from ũih in a post-processing step.
λh can be interpreted as the (discrete approximation of the) force the obstacle exerts
on the body. Its analysis can be found in [13].

The problem above can be written in matrix-vector form as(
A(U i−1) B
BT 0

)(
Ũ i

Λ

)
=

(
0
G

)
. (3.6)

Using the inner product defined by quadrature as described above guarantees that B
is a diagonal matrix. We will discuss solving this linear system in the next subsection
where we will exploit the fact that B is diagonal. The remaining question for this
section is how to determine ΓAC . Obviously, we do not know the exact contact area
a priori. Let Si be the set of all degrees of freedom (with |Si| = dim(V ih)). For
simplicity, let us assume that we have rotated degrees of freedom in such a way that
at every boundary node one is responsible for the normal displacement and the other
two for tangential displacements. Then let SiC ⊂ Si be those degrees of freedom
located at the contact boundary ΓC and representing normal displacements. The
simplest active set methods [35] then define the active set Ai ⊂ SiC by looking at the
sign (inward or outward) of the residual boundary force density:

Ai :=
{
p ∈ SiC : (−A(U i−1)U i−1)p > 0

}
.

Primal-dual active set methods, see [21, 23], improve on this by instead using the
criterion

Ai :=
{
p ∈ SiC :

[
−A(U i−1)U i−1 + c(B̄TU i−1 −G)

]
p
> 0
}
. (3.7)

4An alternative description that also takes into account the function space stability of solutions of
the saddle point problem that results from this minimization problem is given in [23]. The description
given here leads to the exact same algebraic system and is, consequently, equivalent.
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Here B̄pq = 〈n · ϕp,n · ϕq〉ΓC ,h is computed using the entire contact boundary ΓC ,

given that we do not know which parts of it will actually be in contact. As before, B̄
is diagonal. Furthermore, Gp = 〈g,n · ϕp〉ΓC ,h. Numerical experiments suggest that

c = 100E = 300κ(1− 2ν) is a good choice.
Since we do not intend to iterate out the active set for the linearized (elastic)

contact problem but instead re-linearize the plastic behavior after each active set
step, one may argue that a better criterion to determine the active set would replace
the linearized residual −A(U i−1)U i−1 by the fully nonlinear one. To this end, in our
work we compute the active set using

Ai :=
{
p ∈ SiC :

[
R(ui−1)p + c(B̄TU i−1 −G)

]
p
> 0
}

(3.8)

instead of (3.7), where the nonlinear residual is defined as

R(u)p =
(
PΠ(Cε(u)), ε(ϕip)

)
in accordance with (2.10).

Remark 2. In parallel computations, the steps of our algorithm discussed in this
section can be computed almost completely locally on every machine. This includes
the nonlinear residual which only requires one exchange of vector ghost elements. This
satisfies one of the goals of our algorithm, namely that all methods should be designed
to scale in a way that allows us to run problems on very large machines.

At the end of this section, let us add that when using hierarchically refined meshes,
one typically ends up with hanging nodes. The degrees of freedom on these are then
constrained against neighboring degrees of freedom. On top of that, in 3d, some
of these hanging nodes are on the boundary and may also be constrained by the
contact. In this case, we must choose only one of the two constraints for these degrees
of freedom, and we choose the one that results from the hanging node since we want
our finite element approximation to be continuous, even if this (slightly) violates the
contact condition. As a consequence, we ensure that the set SiC of normal displacement
degrees of freedom at the contact boundary does not include degrees of freedom on
hanging nodes.

3.4. Solution of the linear system. Using the methods of the previous section,
we have arrived at the linear system (3.6) that now needs to be solved. One could
do so as is, but it is difficult to find adequate iterative solvers and preconditioners for
saddle point problems of this kind. However, this is also not necessary: Since we have
determined an estimate Ai of the set of active constraints and computed B from it,
the second line of (3.6) simply reads

Ũ ip = g(xp) ∀p ∈ Ai.

This corresponds to a Dirichlet boundary condition for the normal displacements at a
subset of nodes. Consequently, the displacement part of the solution of (3.6) is given
by solving Â(U i−1)Ũ i = Ĥ where

Âpq(U
i−1) =


Apq(U

i−1) if p 6∈ Ai,
0 if p ∈ Ai ∧ p 6= q,

1 if p ∈ Ai ∧ p = q,

Ĥp =

{
0 if p 6∈ Ai,
Gp if p ∈ Ai.

In other words, we simply remove constrained rows from the original linear system.
Since B is non-zero only in these rows, the term BΛ completely disappears, rendering
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Λ a quantity that no longer appears in our computation. As already hinted at above,
the fact that Λ is not uniquely determined then poses no problem in practice. To
restore symmetry of the matrix, we can further transform this linear system by Gauss
elimination steps on each column q ∈ Ai, to

ˆ̂
A(U i−1)Ũ i =

ˆ̂
H(U i−1) (3.9)

where

ˆ̂
Apq(U

i−1) =


Apq(U

i−1) if p 6∈ Ai ∧ q 6∈ Ai,
0 if (p ∈ Ai ∨ q ∈ Ai) ∧ p 6= q,

1 if p ∈ Ai ∧ p = q,

ˆ̂
Hp(U

i−1) =

−
∑
q∈Ai

Apq(U
i−1)Gq if p 6∈ Ai,

Gp if p ∈ Ai.

In fact, it is this form of the linear system that we assemble directly.

It is not difficult to show that
ˆ̂
A(U i−1) is a positive definite matrix if A(U i−1)

is positive definite; by construction, it also inherits the symmetry from A(U i−1).
Consequently, it is now amenable to solution by the Conjugate Gradient (CG) solver
with an algebraic multigrid (AMG) as preconditioner.

Remark 3. Our reformulation has resulted in a linear system that can be as-
sembled with local operations requiring a minimal amount of communication to add to
elements of the matrix or vector that are not stored on the local processor. Further-
more, it can be solved by a preconditioned CG iteration. As above, this combination
satisfies our requirement that we only use methods that are known to scale well even
to very large systems. We will numerically confirm that this is indeed so also in the
current context in Sections 4.2 and 4.3.

3.5. Line search. Once we have computed Ũ i, we can use a line search to
determine the next Newton iterate U i. We use the usual backtracking line search [35]
to find the first step length αi ∈ {1, 2−1, 2−2, . . .} so that∥∥∥R̂(uα)

∥∥∥
`2
<
∥∥∥R̂(ui−1

h )
∥∥∥
`2
, (3.10)

where uα = (1 − αi)ui−1
h + αiũih and where R̂(uα) = R(uα) with the exception of

(i) elements p ∈ Ai where we set R̂(uα)p = 0, and (ii) elements that correspond to
hanging nodes, which we eliminate in the usual manner.

As before, all of these steps can be done mostly locally, with a small amount of
communication to exchange elements of the residual vectors R(uα) between proces-
sors.

3.6. Summary of the algorithm. To summarize, the steps of our algorithm
to be performed in Newton iteration i are as follows:

1. Assemble the residual vector R(ui−1
h ) and the matrix B̄ (or take the latter

from the previous iteration, if the mesh hasn’t changed).
2. Compute the active set Ai.
3. Assemble the matrix

ˆ̂
A and right hand side

ˆ̂
H in the same way as one would

usually assemble A but eliminating rows and columns p, q ∈ Ai when copying
local contributions from every cell to the global objects.
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Fig. 4.1. Adaptively refined mesh (cut away in the left half of the domain for all cells that are
exclusively elastic) and fraction of quadrature points in each cell that are plastified (blue: none, red:
all). Left: Pressing a sphere into a cube, corresponding to the benchmark discussed in Section 4.2.
Right: Pressing the Chinese symbol for “force” into a half sphere.

4. Solve linear system (3.9).
5. Find a step length using the line search procedure (3.10).

4. Numerical results. In this section we show results for a number of test
cases that illustrate the performance of our methods. In particular, in Section 4.1 we
consider the overall performance of our algorithms in terms of the number of Newton
iterations and inner linear iterations, and we will demonstrate that interpolating from
the previous to the next mesh significantly reduces the computational complexity.
This example also shows some of the difficulties one encounters when working on
problems with realistic complexity. In Section 4.2 we then illustrate the accuracy of
our solutions by defining a benchmark problem. Subsections 4.3 and 4.4 evaluate the
parallel scalability of our methods up to 1,024 processor cores and more than a billion
unknowns, and compare our algorithm with one previously described in the literature.
We conclude our numerical results by showing a case of an obstacle with a realistic
geometry used in metal drilling in Section 4.5.

Our implementation of the algorithms discussed above is available as the step-42
tutorial program of the open source finite element library deal.II [3,4] and all compu-
tations below are based on variants of it. We use Trilinos version 11.0.3 for parallel
linear algebra [18,19] and p4est 0.3.4 to distribute meshes among processors [8].

4.1. Evaluating nonlinear and linear solvers. In order to evaluate the per-
formance of nonlinear and linear solvers, we consider two test cases. The first simulates
pressing a rigid sphere into an elastoplastic cube (see the left panel of Figure 4.1; this
example is also the subject of Section 4.2). The second illustrates our ability to solve
problems on unstructured meshes with complex obstacles: we consider a situation
where we press a binary mask (i.e., an obstacle with a flat bottom for certain values
of x1, x2 and an infinite distance for all other values of x1, x2) into a half sphere. We
choose as our obstacle a shape corresponding to the Chinese symbol for “force”, see
the right panel of Figure 4.1. As will become clear from the discussion below, this
is not simply a more complicated obstacle but one that provides for a fundamental
lesson on dealing with complex shapes.

We solve these problems on a sequence of adaptively refined meshes and Tables 4.1
and 4.2 summarize the number of cells and unknowns on each of these meshes, along
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Table 4.1
Performance characteristics of our algorithms when pressing a sphere into a cube. DoFs =

degrees of freedom. It.s = iterations. The number of linear iterations is averaged over the Newton
steps taken on that mesh. In the last two columns, numbers correspond to the algorithm where we
do/do not interpolate the solution from the previous to the next mesh upon mesh refinement.

Mesh # cells # DoFs # Newton it.s avg. # linear it.s
0 512 2,187 6 / 6 3 / 3
1 1,548 6,294 5 / 8 6 / 6
2 4,768 18,207 12 / 11 10 / 9
3 14,652 52,497 8 / 10 12 / 10
4 45,368 154,647 9 / 21 15 / 15
5 140,344 461,106 7 / 31 22 / 22
6 435,044 1,400,961 6 / 31 20 / 23
7 1,347,690 4,297,257 6 / 28 23 / 23

Table 4.2
Performance characteristics of our algorithms when pressing a Chinese symbol into a half-

sphere. All columns as in Table 4.1.

Mesh # cells # DoFs # Newton it.s avg. # linear it.s
0 384 1,443 5 / 5 1 / 1
1 1,189 4,770 13 / 6 5 / 5
2 3,695 14,787 13 / 6 7 / 6
3 11,661 46,122 19 / 7 9 / 9
4 36,630 141,990 22 / 11 9 / 9
5 114,995 432,180 20 / 11 14 / 13
6 360,100 1,319,442 23 / 18 16 / 17
7 1,125,977 4,007,004 37 / 26 18 / 21
8 3,513,838 12,215,337 27 / 30 24 / 23
9 10,931,570 37,106,544 23 / 29 28 / 29
10 33,928,726 112,814,994 22 / 48 30 / 35

with the number of nonlinear and the average number of linear iterations per Newton
step. Each table compares two cases: where the solution on one mesh is interpolated
onto the next one to use as a starting guess, and where we start from scratch on each
mesh. In the latter case, our starting solution is a zero vector with those elements
that would violate the contact condition displaced in normal direction so that they
are below the obstacle. This may lead to cells at the surface whose displaced image is
inverted and in any case to unphysical strains, so the first Newton step is done using
a completely elastic material model (equivalent to one with an infinite yield stress) to
avoid the dependence of the next solution on the unphysical stress state of the initial
solution.

The results of these tables show that for the case of the spherical obstacle (Ta-
ble 4.1), interpolating the solution guarantees an almost constant number of Newton
iterations on each mesh, while this number increases if the solution on each mesh is
computed without reference to that on the previous mesh. This shows that for this
case, the majority of the numerical effort has indeed been pushed onto coarser and
consequently much cheaper meshes. In addition, the number of inner linear iterations
increases only slowly with the number of degrees of freedom (by a factor of less than
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Table 4.3
Description of the benchmark discussed in Section 4.2.

Domain Cube [0, 1m]3

Obstacle Sphere xcenter = (0.5m, 0.5m, 1.59m), r = 0.6m
Contact surface ΓC = {x ∈ Ω : x3 = 1}
Boundary conditions u = 0 on the bottom of the cube

u1 = u2 = 0 on the sides of the cube, u3 is free
Material properties E = 200 GPa, ν = 0.3

(or equivalently κ = 166.67 GPa, µ = 76.92 GPa)
σ0 = 400 MPa, γiso = 0.01

Evaluation point P = (0.5001, 0.5001, 0.9501)T

(in the reference configuration)

2 for an increase from a first reasonable mesh with 50,000 degrees of freedom to one
with more than 4 million), yielding an almost linear overall complexity.

The situation for the Chinese symbol-shaped obstacle (Table 4.2) is more com-
plex. Here, interpolating the solution provides a worse starting solution than just a
zero vector in the first few mesh refinement iterations. Our numerical investigations
indicate that this is due to the fact that for this rather irregular obstacle, the first
meshes used are simply too coarse (the mesh shown in Fig. 4.1 corresponds to mesh 5
of the table) and that the solution computed on each does not accurately reflect the
solution on the next. On the other hand, once the mesh does resolve the obstacle,
the number of Newton steps required when using the interpolated solution from the
previous mesh reverts to a reasonable number and, more importantly, stays constant
as the mesh is further refined. On the other hand, the number of iterations when
starting the Newton method anew on each mesh continues to grow, illustrating the
significant computational advantage obtained by interpolating the solution. In this
context, note in particular that we are most concerned with the number of iterations
on the last few, most expensive meshes. As before, the number of inner linear iter-
ations per Newton step does increase as the mesh becomes finer, albeit slowly: by a
factor 3–4 as the number of degrees of freedom grows by three orders of magnitude
from 105 to 108.

The discussion of these results points at a fundamental issue when moving from
“simple” benchmarks to realistic application cases with complex geometries. There,
the full performance of an algorithm may only become apparent when applying it to
cases where the goal is not just to solve something but to achieve at least engineering
accuracy. As the next section will show, reaching this level of accuracy is not trivial
even for the case of the sphere.

4.2. Evaluating accuracy: Pressing a sphere into a cube. Since we know
of no widely used benchmarks for elastoplastic contact problems, we have decided
to use the first of the two cases discussed in the previous section as a benchmark
problem. A full description of all the parameters corresponding to the picture shown
in the left panel of Fig. 4.1 is given in Table 4.3.5

5We could also have evaluated the accuracy of our solution (relative to the solution on the finest
mesh) using the Chinese symbol obstacle. However, such results would be difficult to reproduce by
others in the community. Furthermore, as the results below will indicate, it is questionable whether
highly accurate results could have been obtained for the complex obstacle even on the more than
100 million unknowns shown in the last line of Table 4.2.
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Fig. 4.2. Convergence of uz(P ) (left) and the contact force
∫
ΓC

λz for the benchmark prob-

lem discussed in Section 4.2. Convergence is measured against the extrapolated best guesses from
Table 4.4.

To evaluate accuracy we consider three measures:
• The vertical displacement uz(P ) at a point P .
• The diagonal elements σxx(P ), σyy(P ), σzz(P ) of the stress tensor at the same

point.
• The integral

∫
ΓC
λz of the vertical component of the reaction force density λ

exerted by the deformable body onto the obstacle. The integral over ΓC is
then the total vertical force.

For P (see Table 4.3), we have chosen a point slightly offset from the central axis to
avoid the complication that computed stresses are discontinuous and, consequently,
non-unique along cell interfaces. The chosen point is guaranteed to never be on such
an interface upon regular mesh refinement of the cubic domain.

Given these considerations, Table 4.4 shows our numerical results for both uniform
and adaptive mesh refinement with linear (p = 1) and quadratic finite elements (p =
2). Due to the symmetry of the problem and the chosen location for the evaluation
point P , we have σxx(P ) = σyy(P ); consequently, only one of the two is shown.
The displacements make sense given the indentation of -0.01m at the surface; we have
verified that our computation of the total force is correct for an elastic body for which
an analytic solution exists (so called Hertzian contact [20]). We therefore believe that
the values shown in the table indeed converge to the correct ones. The last row of the
table contains our best, extrapolated guess of the exact value and we show in Fig. 4.2
convergence histories for uz(P ) and the integrated contact force against these best
guesses (convergence for σxx(P ) and σzz(P ) is less regular – as may be expected –
and not shown here).

The table and figure make clear the degree of difficulty of this problem, despite its
apparent simplicity: for example, computing the displacement to better than 0.1 per
cent already takes several hundred million unknowns with globally refined meshes for
Q1 elements. On the other hand, the results also make clear that adaptive meshes –
in particular when combined with higher order elements – can achieve the same level
of accuracy with far less unknowns: in the case of Q2 elements, just a few hundred
thousand. Secondly, we can not determine the stresses σxx, σzz to better than a few
per cent, even on meshes with a billion unknowns, unless we use both adaptivity and
higher order elements.

These results, considering a relatively simple model problem, suggest that prob-
lems of more realistic complexity such as the Chinese symbol considered in the pre-
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Table 4.4
Computed values of displacements, stresses and integrated forces for global and adaptive mesh

refinement when pressing a sphere into a cube (see Section 4.2). The last row contains extrapolated
values; digits in parentheses are probably correct but with a low degree of uncertainty.

Mesh # cells # DoFs uz(P ) σxx(P ) σzz(P )
∫

ΓC

λz

Global mesh refinement with p = 1
0 512 2,187 -0.0075681 -5733.1 -6098.2 37.306
1 4,096 14,739 -0.0070691 -3317.5 -3855.5 62.313
2 32,768 107,811 -0.0068296 -1946.6 -2565.8 59.099
3 262,144 823,875 -0.0066294 -1027.6 -1684.2 56.761
4 2,097,152 6,440,067 -0.0065339 -1155.4 -1832.8 55.751
5 16,777,216 50,923,779 -0.0064756 -1240.1 -1925.0 55.333
6 134,217,728 405,017,091 -0.0064602 -1170.2 -1856.2 55.221

Global mesh refinement with p = 2
0 512 14,739 -0.0061351 27.5 -605.7 66.640
1 4,096 107,811 -0.0074271 -376.3 -1085.8 57.127
2 32,768 823,875 -0.0065627 -766.3 -1450.0 55.226
3 262,144 6,440,067 -0.0064618 -1107.4 -1794.1 55.247
4 2,097,152 50,923,779 -0.0064541 -1129.5 -1816.0 55.168
5 16,777,216 405,017,091 -0.0064547 -1156.1 -1842.7 55.183

Adaptive mesh refinement with p = 1
0 512 2,187 -0.0075681 -5733.1 -6098.2 37.306
1 1,548 6,294 -0.0070687 -3317.7 -3855.7 62.323
2 4,768 18,207 -0.0068284 -1947.1 -2566.4 59.118
3 14,652 52,497 -0.0066271 -1027.5 -1684.2 56.794
4 45,368 154,647 -0.0065296 -1156.8 -1834.2 55.835
5 140,344 461106 -0.0064715 -1244.6 -1929.3 55.492
6 435,044 1,400,961 -0.0064694 -1242.4 -1927.8 55.377
7 1,347,690 4,297,257 -0.0064587 -1171.9 -1857.8 55.291
8 4,175,172 13,075,026 -0.0064584 -1101.7 -1787.0 55.224
9 12,911,781 40,051,599 -0.0064562 -1150.4 -1836.5 55.197
10 39,915,821 122,655,213 -0.0064557 -1154.8 -1841.2 55.184
11 123,459,540 377,150,526 -0.0064553 -1149.8 -1836.2 55.184

Adaptive mesh refinement with p = 2
0 64 2,187 -0.0064262 -5625.5 -6050.7 26.980
1 176 6,087 -0.0061346 -27.7 -605.6 66.647
2 652 20,397 -0.0074270 -376.4 -1085.8 57.130
3 2,192 64,731 -0.0065623 -766.3 -1450.1 55.229
4 6,980 195,327 -0.0064618 -1107.4 -1794.1 55.251
5 21,652 585,603 -0.0064530 -1125.6 -1811.8 55.172
6 67,264 1,829,181 -0.0064549 -1136.0 -1822.6 55.182
7 208,804 5,842,461 -0.00645493 -1154.6 -1841.0 55.1782
8 647,144 18,341,805 -0.00645512 -1157.1 -1843.4 55.1771
9 2,006,964 56,467,965 -0.006455126 -1158.3 -1844.8 55.1783
10 6,224,212 175,552,233 -0.006455129 -1158.5 -1845.0 55.1789

Extrapolated best guesses
∞ ∞ -0.00645513(1) -1158.(7) -1845.(2) 55.179(4)
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vious section or the drill bit discussed in Section 4.5 can no longer be solved without
adaptivity or higher order elements, even just to rather moderate accuracies. Rather,
realistic applications require the complex methods discussed here, as well as very large
computations that can only be done in parallel. Consequently, we will consider the
parallel scalability of our methods in the next section.

4.3. Parallel scalability. The results shown in Section 4.1 already indicate that
the algorithms described in this contribution can, at least in principle, scale weakly to
large problems since the number of Newton iterations does not grow with the problem
size, and the number of linear iterations grows only slowly. Furthermore, the previous
section shows that even for relatively simple problems, one needs very large numbers
of unknowns to achieve an error of even just better than one per cent, necessitating
the use of parallel computers. To investigate whether our algorithms indeed scale, we
have run a number of computations corresponding to the benchmark discussed in the
previous section on the Brazos cluster at Texas A&M University. We have used up
to 128 nodes, each equipped with one 8-core Opteron 2350 processor (2.5 GHz clock
rate), 32GB of memory per node, and an Infiniband interconnect.

To evaluate our algorithms, Fig. 4.3 shows strong and weak scaling results for all
significant components of our program.

For strong scaling, we have chosen a problem with 9.9 million unknowns (the
largest size we can fit on a single node with 8 cores). We here solve once on a
uniformly refined mesh first and timings are then shown for a once adaptively refined
mesh to include the effects of adaptivity. We show results for multiples of 8 cores
to avoid the effect of partially empty nodes. As seen in the left panel of Fig. 4.3,
we get linear acceleration of all significant parts of the program until around 256
processors (approximately 40k unknowns per core). Beyond this point, the fraction of
the problem each core has to solve simply becomes too small to fully amortize the cost
of communication. Previous experience [2,27] has shown that computations often fail
to scale once the number of unknowns per core drops below approximately 100,000,
indicated by the red line in the figure. Our results here scale somewhat further than
that, possibly due to the fact that the problem requires more work per degree of
freedom.

To demonstrate weak scalability, we use meshes where the number of degrees of
freedom is approximately equal to 1.2 million times the number of cores that partici-
pate in the computation. This is achieved by starting from either a 3×3×3, 4×4×4,
or 5 × 5 × 5 coarse mesh, refining it globally a number of times, and then refining
it adaptively once in such a way that we achieve the desired number of unknowns.
Similar to before, the timings are then done for the last, adaptive step. The coarse
mesh sizes are chosen in such a way that the last step can be achieved by refining
approximately 10% of cells.

The results shown in the right panel of Fig. 4.3 again show that our algorithms
scale well, even to very large problems, losing only approximately a factor of 3 in
overall efficiency when increasing the number of processor cores from 8 to 1024. The
figure shows that the primary obstacles to scalability are solver setup and solver it-
erations (including preconditioner). This preconditioner is provided by Trilinos’ ML
package. However, only part of the slowdown can be attributed to parallel ineffi-
ciencies: as shown in Tables 4.1 and 4.2, as problems become larger, the number of
inner iterations per Newton step increases slowly. Here, from 8 to 1024 processors,
it increases from an average of 28 to 52, accounting for almost a factor of 2 of the
slowdown in the solver (but not preconditioner setup). In other words, a significant
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Fig. 4.3. Results for strong (left) and weak (right) scaling as discussed in Section 4.3. The
red line in the left panel corresponds to 100,000 degrees of freedom per core beyond which scalability
deteriorates. In the weak scaling case, the slowdown is due to parallel inefficiencies as well as to a
larger number of inner iterations per Newton step. See the main text for more information.

fraction of the slowdown is due to a loss in quality of the preconditioner, rather than
inefficient parallel communication.

On the other hand, the third most expensive component of the program – as-
sembling the linear systems, an almost completely local operation – scales almost
linearly. The computation of the residual lacks some scalability because processors’
work depends on the fraction of their cells located at the contact interface; it may be
possible to optimize it, but we have not done so given that it takes up only 7% of run
time even on the largest computations. All other operations are negligible.

We note that the last data point of these weak scaling results corresponds to
a nonlinear, inequality constrained problem with more than 1.25 billion unknowns
and is solved in about 10 hours. Given that during this time we perform 17 Newton
iterations, this corresponds to 35 minutes per Newton iteration for a system with 1.2
million unknowns per core. Taken together with the strong scaling results, this is
consistent with experience from previous work that suggests a time of 1–2 minutes
per linear solve (including assembly, setting up preconditioners and postprocessing)
when using approximately 100,000 unknowns per core for non-trivial problems of this
size [2, 27,48].

The results shown in this section demonstrate that the methods we have presented
work together in a way that allows us to solve very large problems in a reasonable
amount of time, utilizing large numbers of processors. Furthermore, the limitations
we find – primarily the scalability of setting up and applying the algebraic multigrid
preconditioner ML [11] in Trilinos, i.e., the red and orange curves with boxes – are
well known bottlenecks to parallel scalability.

4.4. Comparison with an existing method. In order to put the results of the
previous section in context, we have also implemented an entirely different solver for
elastoplastic contact problems that has previously been described in the literature:
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Fig. 4.4. Comparison of the overall computation time for the active set strategy and the CG-
PSSOR method for a computation on a single processor.

The CG-based projection method CGPSSOR, see [5]. CGPSSOR uses conjugate
gradients as the outer solver and a Gauss-Seidel- (or SSOR-)based preconditioner in
which all degrees of freedom that violate the obstacle condition are always projected.
The CG iteration is modified in such a way that these projected degrees of freedom
are left untouched and remain at their correct values. It is important to note that
this modification does not just affect the inner linear solver but instead requires the
assembly of different linear systems in each iteration, and involves a different approach
to solving the problem altogether. The primary advantage of the algorithm is that
it treats the contact problem within the inner iteration, rather than solving linear
systems that correspond to a fixed set of contact nodes. A detailed description of this
method can be found in [5,9]. In contrast to the first of these references, we are here
using a non-cascadic version.

We apply this method and compare it with our combination of algorithms to the
benchmark example of Section 4.2. Fig. 4.4 shows the run-time for the two methods
on a single processor. The curves compare the time necessary to solve the nonlinear
system on each of a sequence of meshes and includes the time to assemble and solve
the linear and nonlinear systems, but excluding the time for postprocessing, mesh
refinement, and generating graphical output. For small problems, the two methods
are comparable in performance. However, beyond approximately 200,000 degrees of
freedom, the run time of the CGPSSOR method increases faster than that of the
active set/BiCGStab/algebraic multigrid method proposed here. Of course, 200,000
unknowns (corresponding to a 403 uniform mesh) is a vanishingly small number for
many of the problems we have in mind for our approach. The figure does not show
numbers beyond 1.4 million unknowns because run times on a single processor become
unreasonably large.

The figure does not show parallel results since CGPSSOR can not win there:
While we have shown in the previous section that our methods provides scalability
to large numbers of processors, SSOR is an inherently sequential algorithm. It can of
course be parallelized by running the preconditioner only on those diagonal blocks of
the matrix that each processor stores locally, but it is well known that this deteriorates
the quality of a preconditioner and increases the number of linear iterations, unlike
the algebraic multigrid preconditioner demonstrated above.

The conclusion of this section is that for rather small problems, our proposed set
of algorithms is as fast as one that has been described in the literature recently, but
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Fig. 4.5. Left: Drill head with two cooling canals. Right: Distribution of plastified cells and
elastoplastic deformation.

Fig. 4.6. Left: Displacements in z-direction. Right: Adaptive refined mesh on the contact surface.

that for large problems it is superior. Furthermore, unlike the previous algorithm,
our work here scales well in parallel.

4.5. A complex application: Pressing a drill head into a cube. As a final
example, we consider a more realistic obstacle: a drill head that is used as a test case
in the project funded by the German Science Foundation (DFG) that supports the
first author. The geometry of this drill head, shown in Fig. 4.5, contains two channels
used to pump cooling fluid to the drill site. The presence of the cooling liquid also
ensures that the contact is nearly frictionless and thus satisfies at least approximately
one of our assumptions. On the other hand, it is clear that the actual drilling process
can not be modeled taking into account only continuous deformations. Furthermore,
heat development and the temperature dependence of material parameters play an
important role in drilling – both effects that are not taken into account here.

As a first step in the direction of such realistic models, we consider indenting
the drill head into a block of metal. Fig. 4.5 shows both the obstacle as well as the
indentation and the distribution of plastified cells. Fig. 4.6 shows a close-up of the
complex structure of the vertical displacement (left) as well the adaptive mesh used
to resolve it (right).

5. Conclusions and outlook. In this paper, we have investigated a set of
interconnected methods to solve complex elastoplastic contact problems. Our focus
was to develop algorithms for mesh generation, iteration of the plastic and contact
nonlinearities, and solution of the resulting linear systems that in each component
provide almost optimal complexity and can scale to problems that require hundreds
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of millions of unknowns and more than a thousand cores. In the numerical results
shown in Section 4 we have demonstrated the performance and accuracy of these
methods as well as investigated their limits. We have also provided highly accurate
results for a benchmark problem for comparison by others. The implementation of
our methods is available under an open source license as the step-42 tutorial program
of the deal.II finite element library.

Despite the results shown above, further improvements to the algorithm described
here are certainly possible, and will be explored in the future. In particular, the
following points warrant further work:

• A commonly acknowledged bottleneck for algebraic multigrid implementa-
tions is the scalability of the setup phase. This is obvious from Fig. 4.3, but
has also been observed in [2, 27] and elsewhere. In the current context, it
is possible that one can avoid this setup phase most of the time by observ-
ing that the Hessian matrix in one Newton step is likely similar to that of
the previous and that an AMG preconditioner built in the previous step is
then likely also a good preconditioner for the current one. However, how
often one needs to rebuild it without unduly affecting the performance of the
CG iteration involves a trade-off that isn’t immediately obvious. Numerical
experiments will be able to assess this question.

• As shown in Section 4.1, the number of Newton iterations required on one
mesh depends sensitively on how good an approximation we get as a starting
point by interpolating the solution from the previous mesh. In our work,
we simply interpolate the displacement field, but better strategies are con-
ceivable. In particular, we conjecture that a better starting point could be
obtained by not only interpolating the displacement but also the stress or
strain fields, and using these either to obtain a better displacement field or
to determine the first linearized operator IΠ on the new mesh that describes
the linearization of plasticity.

• One should be able to further improve the computational efficiency by using
higher order polynomials or hp-adaptive refinement methods, coupled with
better refinement indicators. This results from the observation that at least in
the elastic region, we can expect the solution to be very smooth and therefore
amenable to higher order finite element approximation.

Further extensions to the methods discussed here are motivated by more realistic
applications. In particular, most metal forming processes are in fact time dependent
and often also involve thermal effects. This requires not only solving a heat equation
and coupling the temperature into the material model, but also keeping track of the
plastic behavior through history variables. Secondly, while we have considered fric-
tionless contact, realistic processes display friction, oftentimes with a limit tangential
stress above which slip occurs. One would include such behavior into our model by
another inequality, to be solved with a separate set of active constraints. Methods to
treat friction can be found, for example, in [22,25,28,40,42,50,51]. In particular, the
methods introduced in [22] provide a promising approach to extend our work.

Finally, for more sophisticated constitutive laws one has to iterate out nonlinear
versions of the hardening process. To do so a small local nonlinear equation system
has to be solved in each quadrature point, for example using a local Newton iteration.
The difficulty is that this vastly increases the cost of plasticized quadrature points
over elastic ones, posing a challenge to parallel scaling and requiring load-balancing
of meshes even in the absence of mesh refinement. We will address these challenges
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in future work.
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[22] S. Hüeber, G. Stadler, and B. I. Wohlmuth, A primal-dual active set algorithm for three-

dimensional contact problems with coulomb friction, SIAM J. Sci. Comput., 30 (2008),
pp. 572 – 596.
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